Coloring Channel Representations for Visual Tracking

نویسندگان

  • Martin Danelljan
  • Gustav Häger
  • Fahad Shahbaz Khan
  • Michael Felsberg
چکیده

Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biologically-inspired channel representations [9] have shown to provide promising results in many applications ranging from autonomous driving to visual tracking. This paper investigates the problem of coloring channel representations for visual tracking. We evaluate two strategies, channel concatenation and channel product, to construct channel coded color representations. The proposed channel coded color representations are generic and can be used beyond tracking. Experiments are performed on 41 challenging benchmark videos. Our experiments clearly suggest that a careful selection of color feature together with an optimal fusion strategy, significantly outperforms the standard luminance based channel representation. Finally, we show promising results compared to state-of-the-art tracking methods in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter

Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...

متن کامل

Particle dynamics and multi-channel feature dictionaries for robust visual tracking

We present a novel approach to solve the visual tracking problem in a particle filter framework based on sparse visual representations. Current state-of-the-art trackers use low-resolution image intensity features in target appearance modeling. Such features often fail to capture sufficient visual information about the target. Here, we demonstrate the efficacy of visually richer representation ...

متن کامل

Visual Tracking using Kernel Projected Measurement and Log-Polar Transformation

Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...

متن کامل

Topic Tracker: Shape-based Visualization for Trend and Sentiment Tracking in Twitter

In recent years there has been a continuous development of social media services on the web. Unprecedented success and active usage of these services result in massive amounts of user-generated data. Visual representation of these large amounts of unevenly distributed time series data is a challenging task, especially while preserving access to individual data points. Our hypothesis is that sha...

متن کامل

Robust Tracking for Real-Time Dense RGB-D Mapping with Kintinuous

This paper describes extensions to the Kintinuous [1] algorithm for spatially extended KinectFusion, incorporating the following additions: (i) the integration of multiple 6DOF camera odometry estimation methods for robust tracking; (ii) a novel GPU-based implementation of an existing dense RGB-D visual odometry algorithm; (iii) advanced fused realtime surface coloring. These extensions are val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015